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Filling .the plane with congruent figures (without overlapping and in-
terstices)* seems to be a difficult unsolved problem of geometry. Not even
the special case, where the congruént figures are convex polygons, has been
settled; there are only partial results.? o .

In the present paper we shall discuss only the filling of the Euclidean
plane with congruent convex hexagons, the so called convex hexagon-patterns.
Only one of our results should be mentioned here, a corollary of Theorem 1:
if the plane can be filled with congruent hexagons, then it can be filled with
the same congruent hexagons in such a way that the graph of covering will
be isomorphic to the graph of regular tesselation with hexagons.

DErINITIONS. The term pattern will be used for any arrangement of poly-
gons filling the plane.? A tesselation is a pattern in which no vertex of a polygon
is the interior point of a side of another polygon.t

A node is a point of the plane coinciding with a vertex (consequently at
least two vertices are in a node). A node will be called first-rate, if it is interior
of a side of a polygon, second-rate otherwise.

TueOREM 1. In a convex hexagon-pattern there is a square area of arbitrary
side such that each interior node of this square is second-rate and it is surrounded
by three hexagons. :

Proor. Let a denote the area of the hexagon, and let—d— denote the dia-

meter of a circle, which contains the hexagon in its interior,
Let S be a square of side s on the plane of pattern (s = 3d) and draw paral-

lels to the sides of S of distance%. These parallels determine some squares,

two of which, S, and S, have the side s—d resp. s+d.

Let n, be the number. of first-rate nodes in the square S, n, the number of
interior second-rate nodes of the square surrounded by three hexagons, n; by
at least four hexagons. Let L denote the number of hexagons having interior

points in the square S, and K the number of hexagons contained by the in-
terior of square S (Fig. 1.)

* These conditions will not be mentioned further.-
?8eee g B. H. OJenone [2], F. Haac [3], [4] and F. LavEs [5].

® L e. each point of the plane is‘inside or on the boundary of a polygon, but no two poly-
gons have a common interior point. See e. g. CoxeTER [1]

¢ See e.g. J. MoLnAr [6].
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Fig. 1.

- Since the square S, covers the hexagons, having interior points in. S; the
sumn of the areas of these hexagons is smaller than the area-of S,; comequently

(l) ‘ » (S+d)2 ,

a
We obtain similarly the inequality -

_ (s—ap
‘a

@)
For the case, when e = ﬁ1+n_, is limited for any square S, the theorem
is trivial, so--we may now suppose ¢ = 5. We shall show that to prove the

the theorem it is sufficient to establish that the quotient will exceed

ny+ng
an arbitrary number N.

a) If — = N, the square S contains at least N(n1+n3) = Ne second-

n +n
rate nodes, sorrounded by three hexagons. Being e = 5, a positive integer f
can be found satisfying e <f? = 2e¢. Let us divide the square S into f2 con-
gruent squares. Since f* > e, at least one of these squares will contain in its
interior only second-rate nodes, surrounded by three hexagons. We shall show
that the side of this square will exceed any length, if N is sufficiently great.

For the area of this square we have the inequality:

' s st
3) — =
f 2e
The square S contains in its interior at lea_st n, nodes, each of them being
surrounded by three hexagons, consequently in these nodes there are 3n,
vertices and this number can not be greater than 6L (the number of vertices
of polygons having mterlor points in the square 8):

3ny, = 6L,
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in consequence
2 (s+d)*
a

eN <
As
s = 34,
i 2
(S--}-d)2 = ’%S) < 282,
therefore
: & (s+dy _ _eNa
2 4

s? Na
—_— —
2e 8

Considering (3) this means that we canchoose a square of areé Na such that

the interior nodes of this. square are second-rate nodes, and each of themis
surrounded by three hexagons. Thus, for proving the theorem it is sufficient
to show that N can exceed any number.

n,
my + n

b) Now we prove that for a sufficiently great number s, >N,

where N is an arbitrary number.

In the first-rate nodes there are at least two vertlces, and in the nodes
surrounded by k hexagons there are k vertices; therefore in the square S there
are at least 2n, + 3n,+4n; vertices. These vertices are contained by the vertlces
of hexagons covering the square (their number is 6L), thus -

2n,+3ny+4n, = 6L
and, in consequence of (1),

_ 2 .
4) . 2n,+3n,+4n, < Gm—.

a

The angles of hexagomns form in every first-rate node an angle x, and in
every second-rate node an angle 2z. The vertices of the interior hexagons of
t he square S are in the interior nodes of S. Hence

e+ 2nym + 2ngw > K4,

where 4z is the sum of angles in a hexagon.
Owing to (2) we get

—d)2
(5) ny, +2ny+3ng > 4(i—aﬂ,
which can be written in the form
3 (s—dy?

6 ——ny—3ny,—3n; < —6
(6) 2 2 3 <= TU P
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Adding the’ corresponding terms of inequalities (4) and (6), we have

n iy < 24sd.
2 a

By this and by the inequality (5) we obtain:
(s—d)?  24sd _ 25*—28sd+ 24>

n=>2
a a a
Consequently
ny 288 ~2sd+2a* s T d
’—zl+n3 . 24sd 12d 6 12s
2 '
Therefore o S T, 4

, Mtn, 24 120 245

d being a fixed number, the value of the above expression will exceed any num-
ber if we choose s sufficiently large. This completes the proof of Theorem 1.

From this theorem it follows that, if there is a pattern with a convex
hexagon, pattern can be made with the same hexagon the graph of which is
isomorphic to the graph of regular tesselation with hexagons.*

Fig. 2. Fig. 3.

On the other hand these patferns are obviously not the only patterns with
convex hexagons, as it is shown by figures 2, 3 and 4.

Using Theorem. 1. we can prove the following theorems:

* From this it follows that, in the case of a given convex hexagon, to settle whether or
not we can make a pattern with this hexagon, it is enough to examine the existence of a pat-

tern the graph of which is isomorphic to the graph of the regular tesselation with hexagons.
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THEOREM 2. If there is a pattern with a convex hexagon, then at least two
of the sides (of this hexagon) are equal. ‘

Proor. Let the sides of hexagon I = ABCDEF, implying the pattern, be
AB=a, BC=b,CD=¢, DE=d, EF =¢ and FA={, and let Il and
IIT be the hexagons joining to the edges AB and BC respectively. (Fig. 5.)

Fig. 5.

On account of theorem 1, we may suppose that the graph of this pattern
which will be examined is isomorphic to the regular tesselation with hexagons;
therefore the hexagons II and III are adjacent, their common edge being BG.

Supposing that the hexagon has no two equal sides, the edge AB is the
side a of hexagon 11, and the edge BC is the side of nexagon II1. From this it
Tollows that the edge BG in hexagon 11 is adjacent to a, and in hexagon III
is adjacent to b. Consequently at least one of the adjacent sides of a (b or f)
is equal to one the adjacent sides of b (@ or ¢), and the hexagon has indeed two
equal sides. »

THEOREM 3. If a convex hexagon has not more than two equal sides, there is
a pattern with this hexagon if and only if these equal sides are opposite and parallel.

a) The condition is necessary. e

If a hexagon has only two equal sides, then there are two adjacent sides,
that neither of them is equal to another side of the hexagon. Let a and b denote.
these sides, and let the others be ¢, d, ¢ and f respectively (Fig. 5.). We may
suppose that the graph of the pattern with this hexagon'is the graph of Figure 6.
As in the previous proof, we get that one of b and f must be equal to one of ¢
and c. Because a # b, a > f and b £ ¢, this can be realized if and only if
¢ = [. In this case the angles in the point B are adjacent angles of the hexagon,
their sum is 27, and consequently c|lf, i. e. the equal sides are opposite and parallel.

- b) The condition is sufficient.

9 ANNALES, Sectio Mathematica, Tomus VI.
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Let us reflect-the hexagon to the midpoint of side q, and: translate these
two hexagons in such a way that side f coincides with ¢ resp. e with . Repeating
these translations we.get a ribbon, the length of which can exceed any value.
Since the two broken lines forming’the boundary of this ribben are congruent
with each other, we can rejoin this ribbon by translations from both sides to
itself; and by repeating this we can cover an arbifrarily large part of the plane.

- (Fig. 6.)

Fig. 6.

TueEOREM 4. If we can make a pattern with a hexagon, then the hexagon has
three angles, the sum of which is 2m.

Proor: Suppose the contrary, then there is a hexagon, having no three angles
with the sum 2n, suitable for making a pattern. '

Let oy, oy, « .. g denote the angles of the hexagon, and let us suppose,

‘that 2”,‘ where i =1,2, ... 6. It is obvious that o # 5

hd =
o ——| = lo;———
3 3

because otherwise every angle of the hexagon must be —2?;5

On account of theorem 1, we may consider an arbitrarily large part of the
pattern, in which every node is second-rate, and three angles form an angle of
2z, 1t is impossible that the angles of a node should be different angles of the
hexagon; consequently, two or three of them are corresponding. Taking a node,
one angle of which is o, the angles in this node cannot be equal; hence
" we may suppose, that they are oy, og, o OF oy, o, 0. From the first case it

would follow, that 2e4 4o, = 2a, 2[a1-_2§_ = _232_(!2; therefore az__%f;
- 2n C 2n S . . :
= 2ley 3 > oy —3 which is impossible. The hexagon has no angle equal

to «,, because in this case the sum of &, o, and of this angle (which naturally
cannot be oy) would be 2z. Consequently, every node of an angle o, is formed
by two angles o, and by one angle o, only; that is to say, every domain of the
chosen part of the pattern contains at least twice as many angles o, as o.
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But this is impossible since it can be proved easily that in a sufficiently large
part of the pattern the different angles are approximately of equal number.
This proves our theorem.

o~

Fig. 7. Fig. 8.

It can be proved, that if in a pattern with the hexagon ABCDEF every
node is second-rate, and surrounded by three hexagons, and in the nodes there are
only two types of systems of angles (in one type of nodes the system o, oy, oty
forms the complete angle, and in the other nodes: oy, oy, oy, Where oy, oty
oty Oy, 0y, oy, are the angles of hexagon), then either AB # DE (Fig. 6.), -
or FAB +ABC< +CDE ¥ = 2 with FA =CD and BC = DE (Fig. -
7 and 8.). :

It ca)n be proved, too, asin theorems 2 and 3, that if a hexagon has two
sides, the lengths of which are different from the length of any other side, a pattern
can be made with this hexcgon if, and only if, the hexagon belongs to one of the
above mentioned types of hexagon (Fig. 6 and 7.). . ’

We.do not know as yet of pattern composed of another type of hexagon.
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